情報学
〜線形計画問題とシンプレックス法〜

2016年6月27日
笠井俊信

【例題】
ある会社が、A、Bという製品を売り出している。それらを製作するための材料はプラスチック、アルミ、ゴムである。それぞれ1個を製作するために必要な材料の量は下の表のとおりである。

<table>
<thead>
<tr>
<th></th>
<th>プラスチック</th>
<th>アルミ</th>
<th>ゴム</th>
<th>単価</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1kg</td>
<td>1kg</td>
<td>3kg</td>
<td>2万円</td>
</tr>
<tr>
<td>B</td>
<td>2kg</td>
<td>1kg</td>
<td>1kg</td>
<td>3万円</td>
</tr>
<tr>
<td>材料の量</td>
<td>14kg</td>
<td>8kg</td>
<td>18kg</td>
<td></td>
</tr>
</tbody>
</table>

このとき、手持ちの材料の範囲内で売上高を最大にするためには、A、Bをそれぞれいくつつくったらよいか？
数式で表す

- 売上高Zは、A, Bをそれぞれx_1, x_2個売ったとすると、
 $Z = 2x_1 + 3x_2$
- 材料の制約条件は、それぞれ
 $x_1 + 2x_2 \leq 14$
 $x_1 + x_2 \leq 8$
 $3x_1 + x_2 \leq 18$
- x_1, x_2は負にはならないので、
 $x_1 \geq 0, x_2 \geq 0$

まとめ
これらの制約条件式を満たし、
$x_1 + 2x_2 \leq 14$
$x_1 + x_2 \leq 8$
$3x_1 + x_2 \leq 18$
$x_1 \geq 0, x_2 \geq 0$
において最大となる
$Z = 2x_1 + 3x_2$
を見つけた問題
線形計画問題
線形計画問題の解法

コンピュータによる
線形計画問題の解法

• シンプレックス法
 – 表（行列）の表現を使った解法

– 準備
 • 不等号を等号にするために非負の変数を用意

\[
\begin{align*}
 x_1 + 2x_2 &\leq 14 \\
 x_1 + x_2 &\leq 8 \\
 3x_1 + x_2 &\leq 18 \\
 x_1 + 2x_2 + x_3 &= 14 \\
 x_1 + x_2 + x_4 &= 8 \\
 3x_1 + x_2 + x_5 &= 18
\end{align*}
\]
シンプレックス法のための準備

$$Z - 2x_1 - 3x_2 = 0$$
$$x_1 + 2x_2 + x_3 = 14$$
$$x_1 + x_2 + x_4 = 8$$
$$3x_1 + x_2 + x_5 = 18$$

$$x_n \geq (n = 1, 2, 3, 4, 5)$$

・基底変数として，Zとその他3変数を抽出
 - 基底変数以外は0としてとりあえずの解を求める
 - $$x_1, x_2$$以外を抽出するのが簡単

シンプレックス表の作成

$$Z - 2x_1 - 3x_2 = 0$$
$$x_1 + 2x_2 + x_3 = 14$$
$$x_1 + x_2 + x_4 = 8$$
$$3x_1 + x_2 + x_5 = 18$$

$$x_n \geq (n = 1, 2, 3, 4, 5)$$

<table>
<thead>
<tr>
<th>基底変数</th>
<th>$$x_1$$</th>
<th>$$x_2$$</th>
<th>$$x_3$$</th>
<th>$$x_4$$</th>
<th>$$x_5$$</th>
<th>定数項</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>-2</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$$x_1$$</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>$$x_2$$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>$$x_3$$</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>18</td>
</tr>
</tbody>
</table>
シンプレックス法の解法手順

• 終了条件:
 – 目的関数の係数がすべて正になったら終了
• 手順1
 – 目的関数の係数の中から最小なものがある列qを抽出
• 手順2
 – 手順1で求めたq列にある各行の要素で各行の定数項を割ったものが最小となる行pを抽出（目的関数以外の行）
• 手順3
 – p行q列をピボットにして掃き出し演算を行う
 終了条件を満たすまで手順1に戻り繰り返す

掃き出し演算

• p行q列をピボットにして掃き出し演算
 – p行をλ倍し, p行q列の値を1にする
 – p行のλn倍をp行以外のすべての行nに加える
 ことで, n行q列の値を0にする
 – 基底変数をq列の変数と置き換える
実際にやってみよう

<table>
<thead>
<tr>
<th>基底変数</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>定数項</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>-2</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x_1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>x_4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>x_5</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>18</td>
</tr>
</tbody>
</table>

• 手順1
 – 目的関数の係数の中から最小なものがある列qを抽出

• 手順2
 – 手順1で求めたq列にある各行の要素で各行の定数項を割ったものが最小となる行pを抽出

掃き出し演算（2行2列）

<table>
<thead>
<tr>
<th>基底変数</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>定数項</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>-2</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x_1</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>x_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>x_5</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>18</td>
</tr>
</tbody>
</table>

• p行q列をピボットにして掃き出し演算

<table>
<thead>
<tr>
<th>基底変数</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>定数項</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>-2</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x_1</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>x_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>x_5</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>18</td>
</tr>
</tbody>
</table>
掃き出し演算（2行2列）

<table>
<thead>
<tr>
<th>基底変数</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>定数項</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>-2</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x_2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>x_4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>x_5</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>18</td>
</tr>
</tbody>
</table>

p行q列をピボットにして掃き出し演算

<table>
<thead>
<tr>
<th>基底変数</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>定数項</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>-1/2</td>
<td>0</td>
<td>3/2</td>
<td>0</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>x_2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>x_4</td>
<td>1/2</td>
<td>0</td>
<td>-1/2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>x_5</td>
<td>5/2</td>
<td>0</td>
<td>-1/2</td>
<td>0</td>
<td>1</td>
<td>11</td>
</tr>
</tbody>
</table>

掃き出し演算（2行2列）

<table>
<thead>
<tr>
<th>基底変数</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>定数項</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>-1/2</td>
<td>0</td>
<td>3/2</td>
<td>0</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>x_2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>x_4</td>
<td>1/2</td>
<td>0</td>
<td>-1/2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>x_5</td>
<td>5/2</td>
<td>0</td>
<td>-1/2</td>
<td>0</td>
<td>1</td>
<td>11</td>
</tr>
</tbody>
</table>

p行q列をピボットにして掃き出し演算

<table>
<thead>
<tr>
<th>基底変数</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>定数項</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>-1/2</td>
<td>0</td>
<td>3/2</td>
<td>0</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>x_2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>x_4</td>
<td>1/2</td>
<td>0</td>
<td>-1/2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>x_5</td>
<td>5/2</td>
<td>0</td>
<td>-1/2</td>
<td>0</td>
<td>1</td>
<td>11</td>
</tr>
</tbody>
</table>
手順1に戻って繰り返す

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{基底変数} & x_1 & x_2 & x_3 & x_4 & x_5 & \text{定数項} \\
\hline
Z & -1/2 & 0 & 3/2 & 0 & 0 & 21 \\
x_2 & 1/2 & 1 & 1/2 & 0 & 0 & 7 \\
x_4 & 1/2 & 0 & -1/2 & 1 & 0 & 1 \\
x_5 & 5/2 & 0 & -1/2 & 0 & 1 & 11 \\
\hline
\end{array}
\]

手順1

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{基底変数} & x_1 & x_2 & x_3 & x_4 & x_5 & \text{定数項} \\
\hline
Z & -1/2 & 0 & 3/2 & 0 & 0 & 21 \\
x_2 & 1/2 & 1 & 1/2 & 0 & 0 & 7 \\
x_4 & 1/2 & 0 & -1/2 & 1 & 0 & 1 \\
x_5 & 5/2 & 0 & -1/2 & 0 & 1 & 11 \\
\hline
\end{array}
\]

掃き出し演算（3行1列）

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{基底変数} & x_1 & x_2 & x_3 & x_4 & x_5 & \text{定数項} \\
\hline
Z & -1/2 & 0 & 3/2 & 0 & 0 & 21 \\
x_2 & 1/2 & 1 & 1/2 & 0 & 0 & 7 \\
x_4 & 1/2 & 0 & -1/2 & 1 & 0 & 1 \\
x_5 & 5/2 & 0 & -1/2 & 0 & 1 & 11 \\
\hline
\end{array}
\]

• それ行の列をピボットにして掃き出し演算

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{基底変数} & x_1 & x_2 & x_3 & x_4 & x_5 & \text{定数項} \\
\hline
Z & -1/2 & 0 & 3/2 & 0 & 0 & 21 \\
x_2 & 1/2 & 1 & 1/2 & 0 & 0 & 7 \\
x_4 & 1 & 0 & -1 & 2 & 0 & 2 \\
x_5 & 5/2 & 0 & -1/2 & 0 & 1 & 11 \\
\hline
\end{array}
\]
掃き出し演算（3行1列）

<table>
<thead>
<tr>
<th>基底変数</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>定数項</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>-1/2</td>
<td>0</td>
<td>3/2</td>
<td>0</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>x_2</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>x_3</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>x_5</td>
<td>5/2</td>
<td>0</td>
<td>-1/2</td>
<td>0</td>
<td>1</td>
<td>11</td>
</tr>
</tbody>
</table>

・p列をピボットにして掃き出し演算

<table>
<thead>
<tr>
<th>基底変数</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>定数項</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>x_3</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>x_5</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-5</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

掃き出し演算（3行1列）

<table>
<thead>
<tr>
<th>基底変数</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>定数項</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>x_3</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>x_5</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-5</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

・p列をピボットにして掃き出し演算

<table>
<thead>
<tr>
<th>基底変数</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>定数項</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>x_3</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>x_5</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-5</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>
終了条件を満たすので終了

<table>
<thead>
<tr>
<th>基底変数</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>定数項</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>x_3</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>x_4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-5</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>プラスチック</th>
<th>アルミ</th>
<th>ゴム</th>
<th>単価</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1kg</td>
<td>1kg</td>
<td>3kg</td>
</tr>
<tr>
<td>B</td>
<td>2kg</td>
<td>1kg</td>
<td>1kg</td>
</tr>
</tbody>
</table>

材料の量
A: 14kg
B: 8kg
C: 18kg

$Z = 22$
$x_2 = 6$
$x_1 = 2$
$x_5 = 6$

最終課題の内容

• シンプレックス法をBASICで記述
 - データはプログラム内に記述
 - 今週, 来週(, 再来週)で途中まで演習・解説
 - 続きを完成させてメールで提出
 • 〆切 8月10日（水）
 - 8月11日にHPに解答例を公開
出力結果例

課題を数ステップに分割

1. プログラム内のデータを変数に読み込む
2. 終了条件を記述（後回し）
 - 終了条件を満たさないと繰り返す
3. 手順1（q列の抽出）を記述
4. 手順2（p行の抽出）を記述
5. 手順3（掃き出し演算）を記述
6. 結果の出力
データの表現

<table>
<thead>
<tr>
<th>次元</th>
<th>Z</th>
<th>x₁</th>
<th>x₂</th>
<th>x₃</th>
<th>x₄</th>
<th>x₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>基底変数</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>定数項</td>
<td>-3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>8</td>
<td>18</td>
</tr>
</tbody>
</table>

ここを表現する

Z → 0
x₁ → 3
x₂ → 4
x₃ → 5

1. データを変数に読み込む

100 DIM X(10,10)
600 DATA 4,7
110 READ G,R
610 DATA 0,-2,-3,0,0,0,0
120 FOR I=1 TO G
620 DATA 3,1,2,1,0,0,14
130 FOR J=1 TO R
630 DATA 4,1,1,0,1,0,8
140 READ X(I,J)
640 DATA 5,3,1,0,0,1,18
150 NEXT J
650 END
160 NEXT I

2次元配列のすべてのデータを操作するには
For文を入れ子にする必要がある