拙著:数学教員のための確率論[改訂版], 岡山大学出版会, 2025

正誤表:数学教員のための確率論[改訂版]
ページ
p.92:l.7 Bernoulli分布 \( \mathrm{Bin}(\theta) \quad(\theta\in[0,1]) \) Bernoulli分布 \( \mathrm{Ber}(\theta) \quad(\theta\in[0,1]) \)
p.155:l.5-6 \( \begin{equation*} \begin{split} & \left\{\begin{array}{c|c} (\omega_1,\cdots,\omega_n) \in \Omega^n & X_{(k)}((\omega_1,\cdots,\omega_n)) \leq x \end{array}\right\} \\&= \left\{\begin{array}{c|c} (\omega_1,\cdots,\omega_n) \in \Omega^n & X_{(1)}((\omega_1,\cdots,\omega_n)),\cdots, X_{(k)}((\omega_1,\cdots,\omega_n)) \leq x \end{array}\right\} \end{split} \end{equation*} \) \( \begin{equation*} \begin{split} & \left\{\begin{array}{c|c} (\omega_1,\cdots,\omega_n) \in \Omega^n & X_{k:n}((\omega_1,\cdots,\omega_n)) \leq x \end{array}\right\} \\&= \left\{\begin{array}{c|c} (\omega_1,\cdots,\omega_n) \in \Omega^n & X_{1:n}((\omega_1,\cdots,\omega_n)),\cdots, X_{k:n}((\omega_1,\cdots,\omega_n)) \leq x \end{array}\right\} \end{split} \end{equation*} \)
p.155:l.10-11 \( \begin{equation*} \begin{split} & \left\{\begin{array}{c|c} (\omega_1,\cdots,\omega_n) \in \Omega^n & X_{(k)}((\omega_1,\cdots,\omega_n)) \geq x \end{array}\right\} \\&= \left\{\begin{array}{c|c} (\omega_1,\cdots,\omega_n) \in \Omega^n & X_{(k)}((\omega_1,\cdots,\omega_n)),\cdots, X_{(n)}((\omega_1,\cdots,\omega_n)) \geq x \end{array}\right\} \end{split} \end{equation*} \) \( \begin{equation*} \begin{split} & \left\{\begin{array}{c|c} (\omega_1,\cdots,\omega_n) \in \Omega^n & X_{k:n}((\omega_1,\cdots,\omega_n)) \geq x \end{array}\right\} \\&= \left\{\begin{array}{c|c} (\omega_1,\cdots,\omega_n) \in \Omega^n & X_{k:n}((\omega_1,\cdots,\omega_n)),\cdots, X_{n:n}((\omega_1,\cdots,\omega_n)) \geq x \end{array}\right\} \end{split} \end{equation*} \)